Email updates

Keep up to date with the latest news and content from Journal of Hematology & Oncology and BioMed Central.

Open Access Highly Accessed Review

The effects of β-glucan on human immune and cancer cells

Godfrey Chi-Fung Chan1*, Wing Keung Chan1 and Daniel Man-Yuen Sze2

Author Affiliations

1 Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong

2 Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong

For all author emails, please log on.

Journal of Hematology & Oncology 2009, 2:25  doi:10.1186/1756-8722-2-25

Published: 10 June 2009

Abstract

Non-prescriptional use of medicinal herbs among cancer patients is common around the world. The alleged anti-cancer effects of most herbal extracts are mainly based on studies derived from in vitro or in vivo animal experiments. The current information suggests that these herbal extracts exert their biological effect either through cytotoxic or immunomodulatory mechanisms. One of the active compounds responsible for the immune effects of herbal products is in the form of complex polysaccharides known as β-glucans. β-glucans are ubiquitously found in both bacterial or fungal cell walls and have been implicated in the initiation of anti-microbial immune response. Based on in vitro studies, β-glucans act on several immune receptors including Dectin-1, complement receptor (CR3) and TLR-2/6 and trigger a group of immune cells including macrophages, neutrophils, monocytes, natural killer cells and dendritic cells. As a consequence, both innate and adaptive response can be modulated by β-glucans and they can also enhance opsonic and non-opsonic phagocytosis. In animal studies, after oral administration, the specific backbone 1→3 linear β-glycosidic chain of β-glucans cannot be digested. Most β-glucans enter the proximal small intestine and some are captured by the macrophages. They are internalized and fragmented within the cells, then transported by the macrophages to the marrow and endothelial reticular system. The small β-glucans fragments are eventually released by the macrophages and taken up by other immune cells leading to various immune responses. However, β-glucans of different sizes and branching patterns may have significantly variable immune potency. Careful selection of appropriate β-glucans is essential if we wish to investigate the effects of β-glucans clinically. So far, no good quality clinical trial data is available on assessing the effectiveness of purified β-glucans among cancer patients. Future effort should direct at performing well-designed clinical trials to verify the actual clinical efficacy of β-glucans or β-glucans containing compounds.